
Euphoria Documentation for
Salesforce

What is the Purpose of this document?..3
Salesforce Account Configuration and Workspace Setup.. 3

Register Salesforce Accounts... 3
Create the Organisations Details.. 4
Whitelist Authorisation.. 9

TMS Integration Centre - Webhook Creation..13
Internet Settings Allow for Redirects.. 14
Integration Center: How to Create an Integration Group..15
How to Create the Add This Contact Webhook.. 17
How to Create an Account Lookup Webhook.. 25
How to Create the Open Salesforce Webhook.. 30
How to Create the Contact Lookup by Phone Number Webhook (Linked to Open Salesforce)................34
How to Create the Alternative Contact Lookup by Phone Number Webhook (Linked to Open
Salesforce).. 39
How to Create the Alternative Contact Lookup by NameWebhook (Linked to Open Salesforce)...........44
How to Create the Add Activity to Contact Webhook..49
How to Create the Webhook (Linked to Add Activity).. 57
Configuration of Webhooks in Queues... 62
Webhooks In Use in Agent Workspace.. 65

Contact Lookup by Phone Number Webhook (On Answer)...66
Alternative Contact Lookup by Phone Number Webhook..67
Alternative Contact Lookup by Name Webhook.. 69
Add This Contact Webhook... 71
Get Contact Webhook with Activity) (On Disposition)..73

What is the Purpose of this document?
This document explains what is needed when creating Webhooks for the Euphoria TMS to interact with a

Salesforce account.

For the webhooks to work in the Euphoria Agent Workspace, the user will need to go through 4 set-up

phases.

● Salesforce Account Configuration and Workspace Setup

● Ensuring Internet Settings Allow for Redirects

● Creation of the Webhooks in TMS

● Adding the created Webhook to a queue or Campaign.

Salesforce Account Configuration and Workspace Setup
A user can only link the Webhooks from the Euphoria TMS to Salesforce if they have access to Salesforce.

Thus, the first step is to create a Salesforce account. If the user already has a Salesforce account, follow

the Create the Organisations Details steps to ensure that the Euphoria platform is able to access the

user’s Salesforce account.

Register Salesforce Accounts.

For any assistance with the steps for Salesforce, contact an agent to assist on the Salesforce Contact Page

A trial Salesforce account will not allow the TMS webhooks to activate. A paid business account will be

needed. Alternatively, a Developer account can be activated. Go to developer.salesforce.com/signup.

(When creating a password, do not use any special characters.)

Create a business account using the Salesforce steps. (A Salesforce consultant can assist with this when

setting up the account). Below is an example of how the Business presence will look on Salesforce.

https://www.salesforce.com/company/contact-us/
https://developer.salesforce.com/signup

Create the Organisations Details

Note: The domain URL “euphoriatelecoms-dev-ed.develop.my.salesforce.com” used in this documentation

and pictured below is an example of a customer domain seen in the URL section of a browser. Each user

will have their own unique domain, which is used in creating API calls, and will be referred to as the

Salesforce Classic Customer URL. (This is the Salesforce Classic domain name, not the Lightening Domain

Name)

● If not already on the Classic Salesforce page, select the profile icon on the right, and then

Switch to Salesforce Classic.

● Select Setup in the top right corner of the screen.

● Scroll down to Build in the left menu item pane. Click on the Play button next to create.

This will open the create options. Select Apps from the side menu. This will open the Apps

page.

● From the Apps page, scroll down to Connected Apps. Connected Apps act as the API

endpoint for external calls to Salesforce. A user can have multiple connected apps within their

Salesforce Organisation. Click New to create a new connected application. This will open the

New Connected App page.

● Complete the form, providing the information as required under the Basic Information header:

○ Connected App Name: The system being integrated with: TMS

○ API Name: Name to display on the Connected Apps section.

○ Contact Email: User’s work email address.

○ Contact Phone: Company phone number.

○ Logo, Icon and Info URL: Optional information about the TMS is not required.

● Under the API (Enable OAuthSetting) heading, enable the Enable OAuthorisation Settings

tick box. This will open the section with the available OAuth Scopes.

○ In the Callback URL text box, type the Salesforce Classic Customer domain URL. This

is where the user will be redirected after authentication from the third party. (See

explanation above)

○ In the Available OAuth Scope select box, select Full Access (for the time being). Select

Add. Scroll to the bottom of the page and click Save.

The Salesforce server will now create the connected application, which can be linked to the user's

workspace or container where the API calls can be placed.

Note: Creating a connected application takes approximately 10 minutes to initialise after it has

been saved.

● Press continue, and a new screen will open on the application details. Select Manage

Consumer Details to view the Authorization token information. This information will ONLY show

once; therefore, it is essential to copy and save to a safe space as it will be used during the creation

of Webhooks in the third Party.

● When Manage Consumer Details is selected, a verification window will appear. Enter the

Verification code that has been sent to your email address and press Verify.

● The page will open and display two values that are needed when creating webhooks in the TMS.

Save these in a safe place. These two values are:

○ Consumer Key

○ Consumer Secret

● Once the Key and Secret are saved, a reset of the Authorisation token needs to be done in order to

ensure security. To do this, select the user name in the top right corner and then My

Settings.

● On the My Settings page, Select Personal, and then Reset My Security Token. The Reset

My Security Token window will open. Select the Reset Security Token button.

● This will send an email with the new token. Save this email as this token will be needed when

creating the Integration Group.

Whitelist Authorisation

This step is necessary for the secondary level of security.

● Select Setup in the top right corner of the screen.

● Scroll down in Administer in the left menu item pane. Click on the Play button next to

Security Controls. This will open the options. Select CORS from the side menu. This will open

the CORS page. This page lists origins that are allowed for cross-origin resource sharing.

● Click New to add to the list of allowed Third Parties. This will open the page to add the Third

Party URL.

● Add the TMS URL https://tms.euphoria.co.za and press Save.

● Select CORS from the left side menu again to refresh the page.

● Select Edit on the Cross-Origin Resource Sharing (CORS) Policy Settings

● Enable the CORS for OAuth endpoints checkbox. Select Save to apply the change.

● Select OAuth and OpenID Connect Settings from the left side menu.

https://tms.euphoria.co.za

● Ensure Allow OAuth Username-Password Flows, Allow OAuth User-Agent Flows and Allow

Authorization Code and Credentials Flows are all switched on. Refresh the Salesforce page.

● The last part of the autorisation is to ensure the connected app is allowed access. Scroll down in

Administer in the left menu item pane. Click on the Play button next to Manage Users.

This will open the options. Select Profiles from the side menu. This will open the Profiles

page. This page lists the different user types in Salesforce.

● Scroll down to the System Administrator line, and press Edit.

● On the profiles page enable YOUR connected app to ensure that the webhook has access into

Salesforce. Scroll down to the bottom of the page and press Save.

TMS Integration Centre - Webhook Creation
The Euphoria API (Application Programming Interface) is a web service that can interact with other

systems to achieve several tasks. Some of these tasks may be actions the system can perform, such as

dialling a number or retrieving certain information for use in another system like a CRM application

(hereafter referred to as the “target system”).

To achieve any level of integration between systems, both may need the ability to interact via API, so find

out what APIs the other system can offer before embarking on an integration project.

Note: System webhooks usage is restricted to extensions with agent functionality enabled.

Integration Centre

The Integration Centre has two primary uses:

1. To send data to another system, this may be information such as numbers, call duration, attending

agent or even call outcomes.

2. To query and retrieve information from the other system, often based on information available in

the call, such as the number calling in or supplied by an agent, such as a reference/ticket number.

To converse with the other system, the Integration Centre allows the creation of “webhooks”. A webhook

is essentially a way to talk to an API on the other system for processing (whatever that may involve),

meaning it needs to understand (and be configured for) how the API on the other system expects to

interact.

To create webhooks, creating the ground rules for communication in the Integration Group is necessary.

Most often, these include parameters like authentication, and the particulars should be available in the

other system's documentation.

For any of the below webhooks to work, the agent must be logged in to their Salesforce Account, and

the TMS browser settings need to allow Salesforce redirects to open. The next section will indicate

how to check the browser settings.

Internet Settings Allow for Redirects.
In order for some of the Webhooks to trigger and open the Salesforce pages, browser settings need to be

checked for Google Chrome. This is the recommended Browser.

● On a browser window that has the TMS open, Select the Settings icon or lock icon. Select

Site Settings to go to the permissions page.

● Ensure that Pop-Ups and redirects is switched to Allow.

Below are the steps to learn how to create a group. Once a group has been created, webhooks can be

created. This document will cover the creation of 8 Webhooks. Add This Contact, Add This Contact with

Account (Account Lookup), Contact Lookup, Alternative Contact Lookup by Name, Alternative Contact

Lookup by Number, Add Activity and Get Contact Webhooks.

Integration Center: How to Create an Integration Group.

● Go to the TMS URL: https://tms.euphoria.co.za/

● Choose the desired account. A user needs access to the menu Item in order to complete the below

steps. This menu item access is either in a Super User account or a manager account.

● Click on the API & Integration Center menu item. Click on the Integration Center

sub-menu item.

● Click on +Add New to add an integrations Group.

● Give the group the name Salesforce (The name will represent the group under which all

webhooks fall). Select the OAuth2 authentication type. OAuth stands for Open Authorization.

It is an open standard for access delegation, commonly used to allow third-party applications to

access resources on a user's behalf without exposing their credentials. Select the

Global authentication level. Global is a single set of credentials used for all interactions with

the target system.

.

https://tms.euphoria.co.za/

When a Global authentication level is selected, add the Client Salesforce username and

Password. This is the same username and Password that is mentioned in the Create the

Organisation Details section.

a. Username: Salesforce username.

b. Password: A combination of a Salesforce password and New Security Token value which is

emailed to you from Salesforce i.e. (Password and New Token value together).

● Add the Consumer Key And Consumer Secret: As explained in Create the Organisation Details

section. Scroll down and add YOUR Salesforce Classic Domain URL. Click Save to

create the group.

How to Create the Add This Contact Webhook

The Webhook will allow agents to add the current caller to their Salesforce contact list. This webhook will

be seen as a button in the Agent workspace and will be selectable during a call. This function is

dependent on a company account lookup webhook, as a contact will need to be linked to a company in

Salesforce. In order to do this, the company ID is required as one of the webhook parameters. For

purposes of illustration, an example company ID will be taken from the Salesforce demo instance to aid in

the testing of this webhook’s initial setup; this will not be required when this is in production, as further

steps are taken below in this document to assist with this. This ID needs to be saved as it will be used in

the testing and configuration step. If this is the first time on Salesforce, create a new account.

To locate the Company Account ID:

● In Salesforce, select Switch to Lightning Experience to access the company and contacts

pages. If sent to a page other than the Home page, speak to a Salesforce consultant.

● Select the Accounts tab and click on an account to open it. (If no account is created, add

an account first)

● The Account ID will be in the URL. Copy and save it for when it’s needed in the test values.

The webhook can be created now that the Account ID is copied and saved.

● Click on the API & Integration Center menu item. Click on the Integration Center

sub-menu item.

● Select the Salesforce Group. Select the drop-down arrow next to Actions and then Add

Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX PostWebhook Type. Select the JSONWebhook Data Type. Select the

Show Request Result Response Type, which indicates how the result should be handled.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL; the second part is the page that needs to be accessed.

Add parameters:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_contact.htm

● Select the + Add Request Parameter button. Then drag and drop a Dynamic Parameter

into a value box. This will need to be done five separate times to have all the required Dynamic

Parameters for the webhook. After each drag and drop of an Agent Input parameter, a Prompt

pop-up will open. These labels are what the agent will see when the value is requested.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm

● An Agent Input type allows for an agent to type in a value when this webhook runs, like in this

case to specify the contact details. This will open the Agent Input label prompt. These labels are

what the agent will see when the value is requested. The labels must say Name, Surname, Phone

Number, Email, and Company Account ID to find the correct Company in Salesforce.

● Add the parameter name as explained in the Salesforce API document as seen below.

For a new contact, the user needs to add parameters for the First Name, Last Name, Phone

Number, Email and Company ID. The company ID is classified as an Account Id in Salesforce and

was saved in the first steps.

● Name: FirstName

● Parameter Value: {AGENT_INPUT_1}

● Name: LastName

● Parameter Value: {AGENT_INPUT_2}

● Name: Phone

● Parameter Value: {CALL_NUMBER_NOPREFIX}

● Name: Email

● Parameter Value: {AGENT_INPUT_3}

● Name: AccountId

● Parameter Value:{DYNAMIC_PARAMETER}

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button.

● A pop-up window opens requesting a test value. Add the Test Values requested and

Press Apply. For Account ID, use the saved details from Salesforce as explained above. These

test values are only requested in this step to ensure that a result is given. The Agent will not need

to add test values in the normal usage of the webhook.

● A Result page will open with the information requested by the webhook. Select the result options

the agent should see. Select Agent View and press Apply to see the results the same

way the agent would.

The result of adding a contact can be viewed in the contacts list view on the Salesforce contacts page, as

well as on a results page in the TMS.

● Once the result shows correctly, change the response type in the webhook to Simple success

or failed message. This will allow a pop-up message to show when the contact has been added

successfully or a failed message when it has not. Click Save again to apply the change.

How to Create an Account Lookup Webhook

The Account Lookup Webhook will be used to access Company information from Salesforce. This is

necessary when adding a contact to Salesforce. The webhook will be linked to the Add this Contact

webhooks. Once the Company account has been selected, the Add This Contact webhook will activate.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX Get Webhook Type. Select the JSONWebhook Data Type. Select the

*Show Multiple Requests only Type, which indicates how the result should be handled.

*Note: When testing the webhook, select Show

Request Result. This will open a result page,

even when there is only one result, allowing the

selection of viewable fields which will be covered

in later steps.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL, and the second part is the page that needs to be accessed.

Add parameters:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_accountshare.htm

● Select the + Add Request Parameter button. Drag and drop the correct parameter into the

parameter value box. This will open the Agent Input label prompt.

● This label is what the agent will see when the value is requested. The label must say

Company Name to find the correct Company in Salesforce. (Account is Salesforce are considered

companies, therefore it will be one of the account names)

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_accountshare.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_accountshare.htm

● Add the parameter name as explained in the Salesforce API document as seen below.

● Name: Accounts

● Parameter Value: {AGENT_INPUT_1}

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button.

● A pop-up window opens requesting a test value. Add an Account Name of a company that

can be found in Salesforce and press Apply. This test value is only requested in this step to

ensure that a result is given. The Agent will not need to add test values during regular webhook

usage.

● A Result page will open with the information requested by the webhook. For some webhooks,

the result page will have many columns of information, but not all of the information will be

needed by an agent. Therefore it is important to limit what the agent sees. To do this select the

tick box next to the column of information the agent should see. Click on Agent View and

press Apply to see the results the same way the agent would.

Unfiltered

Filtered

● Select the Id link chain icon to link another webhook to the Account LookupWebhook. Select the

Add This ContactWebhook. Press Apply. This will allow the agent to add the person on the

call as a contact in Salesforce under a selected company. (Go back to the integration Centre page to the

created webhook)

● Change the name of the webhook from Account Lookup to Add This Contact with Account, as that

is what the agent will see in the agent workspace. Select Save.

Sample of agent workspace.

How to Create the Open SalesforceWebhook

The Open Salesforce Webhook will be used to open a contact’s profile in Salesforce with either their

number or name. It is created to link with the Contact Lookup, Alternative Contact Lookup by Name and

Alternative Contact Lookup by Number webhooks to ensure that the correct Salesforce page opens. This

webhook will not be added to a queue or seen in the Agent Workspace.

In order to create and test this webhook, the user will need the Contact ID (not to be confused with the

Company Account ID). This ID will be used during the Test and Configure stage of the webhook creation

but will not be needed during the normal use of the webhooks in the Agent Workspace. To locate the

Contact ID, follow the below steps:

● In Salesforce select Switch to Lightning Experience if not already in this space.

● Select the Contacts tab, and select any contact in the list to open it.

● The Contact ID will be in the URL. Copy and save it for when it’s needed in the test values.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the Browser WindowWebhook Type. Select the JSONWebhook Data Type.

Select the Show Request Result Response Type, which indicates how the result should be

handled.

● Add the Salesforce Lightening Customer Domain URL that the webhook needs to access. The first

part of the URL is the company URL, the second part is the page that needs to be accessed in

lightening.

Add parameters:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_contact.htm

● Select the + Add Request Parameter button. Drag and drop the correct parameter into the

parameter value box.

● Add the parameter Name as explained in the Salesforce API document as seen below.

● Name: Id

● Parameter Value: {DYNAMIC_PARAMETER}

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button,

● A pop-up window opens requesting a test value, Add a Contact Id from Salesforce and press

Apply. This test value is only requested in this step to ensure that a result is given. The Agent

will not need to add test values in the normal usage of the webhook.

● The Salesforce Contact page will open for the requested test value.

How to Create the Contact Lookup by Phone NumberWebhook (Linked to Open

Salesforce)

The Webhook is one of 3 webhooks that allows an agent to have a look if the caller has a profile in

Salesforce and to view their information. This Webhook will automatically trigger at the beginning of a

call. If the caller is a Salesforce contact, or the agent calls a Salesforce contact, their profile information

will show. The second and third Webhooks will be used to search for a caller during the call.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX Get Webhook Type. Select the JSONWebhook Data Type. Select the

*Show Multiple Result Response Type, which indicates how the result should be handled.

*Note: When testing the webhook, select Show

Request Result. This will open a result page,

even when there is only one result, allowing the

selection of viewable fields which is covered

in later steps.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL, and the second part is the page that needs to be accessed.

Add parameters:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_contact.htm

● Select the + Add Request Parameter button. Drag and drop the correct parameter into the

parameter value box.

● Add the parameter name as explained in the Salesforce API document as seen below.

● Name: Phone

● Parameter Value: {CALL_NUMBER_NOPREFIX}

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button.

● A pop-up window opens requesting a test value, Add a Phone number of a contact in

Salesforce and press Apply. This test value is only requested in this step to ensure that a

result is given. The Agent will not need to add test values during regular webhook usage.

● A Result page will open with the information requested by the webhook. For some

webhooks, the result page will have many columns of information, but not all of the information

will be needed by an agent. Therefore it is important to limit what the agent sees. To do this select

the tick box next to the column of information the agent should see. Click on Agent View

and press Apply to see the results the same way the agent would.

Unfiltered

Filtered

● Select the Id link chain icon to link another webhook to the Contact LookupWebhook. Select the

Open SalesforceWebhook. Press Apply. This will allow the Contact Lookup webhook to open

a Salesforce result when one is available.

● Once the result shows correctly, change the response type in the webhook to Show Multiple

Results Only. This will allow a single result to open directly on Salesforce, and a multiple result to

open on a result page where one of the options can be selected. Click Save again to apply the

change.

● For singular results, a Salesforce page will open. (Web Browsers might be slow to respond, refresh

the TMS page if need be.)

● If multiple contact profiles are available, a result page will open where the Id field is clickable. This

will then open the contact in Salesforce.

How to Create the Alternative Contact Lookup by Phone NumberWebhook

(Linked to Open Salesforce)

The Alt Contact Lookup by Phone Number Webhook allows agents to look for a caller's contact profile

and opens the page in Salesforce to view their information. This will be seen as a button in the Agent

workspace.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX Get Webhook Type. Select the JSONWebhook Data Type. Select the

*Show Multiple Result Response Type, which indicates how the result should be handled.

*Note: When testing the webhook, select Show

Request Result. This will open a result page,

even when there is only one result, allowing the

selection of viewable fields which will be covered

in later steps.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL, and the second part is the page that needs to be accessed.

Add a parameter:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_contact.htm

● Select the + Add Request Parameter button. Drag and drop the desired parameter into

the parameter value box. This will open the Agent Input label prompt.

● This label is what the agent will see when the value is requested. The label must say

Contact Number to find the contact in Salesforce.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm

● Add the parameter name as explained in the Salesforce API document, as seen below.

● Name: Phone

● Parameter Value: {AGENT_INPUT_1}

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button.

● A pop-up window opens requesting a test value, Add a Phone number of a contact in

Salesforce and press Apply. This test value is only requested in this step to ensure that a

result is given. The Agent will not need to add test values during regular webhook usage.

● A Result page will open with the information requested by the webhook. For some webhooks,

the result page will have many columns of information, but not all of the information will be

needed by an agent. Therefore it is important to limit what the agent sees. To do this select the

tick box next to the column of information the agent should see. Click on Agent View and

press Apply to see the results the same way the agent would.

● Select the Id link chain icon to link another webhook to the Alt Contact Lookup By Phone Number

webhook. Select the Open SalesforceWebhook. Press Apply. This will allow the Alt

Contact Lookup By Phone Number webhook to open a Salesforce result when one is available.

● Once the result shows correctly, change the response type in the webhook to Show Multiple

Results Only. This will allow a single result to open directly on Salesforce, and a multiple result to

open on a result page where one of the options can be selected. Click Save again to apply the

change.

● For singular results, a Salesforce page will open. (Web Browsers might be slow to respond, refresh

the TMS page if need be.)

● If multiple contact profiles are available, a result page will open, where the Id field is clickable.

Clicking this will open the contact in Salesforce.

How to Create the Alternative Contact Lookup by NameWebhook (Linked to Open

Salesforce)

The Alt Contact Lookup by NameWebhook will allow agents to search for a contact that exists in

Salesforce with a full or partial name. The results will show any and all names related to the letters that

have been requested on a results page. If multiple contacts are shown in the results sections, the agent

will be able to select a contact and delve into their details further on Salesforce.

This webhook will be seen as a button in the Agent workspace and will be selectable. This is useful as not

all calls that the agent makes or receives will be related to contacts in Salesforce.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX Get Webhook Type. Select the JSONWebhook Data Type. Select the

*Show Multiple Result Response Type, which indicates how the result should be handled.

*Note: When testing the webhook, select Show

Request Result. This will open a result page,

even when there is only one result, allowing the

selection of viewable fields which will be covered

in later steps.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL, and the second part is the page that needs to be accessed.

Add parameters:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_contact.htm

● Select the + Add Request Parameter button. Drag and drop the correct parameter into the

parameter value box. This will open the Agent Input label prompt.

● This label is what the agent will see when the value is requested.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm

● Add the parameter name as explained in the Salesforce API document as seen below.

● Name: Name

● Parameter Value: {AGENT_INPUT_1}

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button,

● A pop-up window opens requesting a test value, Add a Name, or the start of a name of a

contact in Salesforce and press Apply. This test value is only requested in this step to ensure

that a result is given. The Agent will not need to add test values during regular webhook usage.

● A Result page will open with the information requested by the webhook. For some

webhooks, the result page will have many columns of information, but not all of the information

will be needed by an agent. Therefore it is important to limit what the agent sees. To do this select

the tick box next to the column of information the agent should see. Click on Agent View

and press Apply to see the results the same way the agent would.

● Select the Id link chain icon to link another webhook to the Alt Contact Lookup By Name webhook.

Select the Open SalesforceWebhook. Press Apply. This will allow the Alt Contact Lookup

By Name webhook to open a Salesforce result when one is available.

● Once the result shows correctly, change the response type in the webhook to Show Multiple

Results Only. This will allow a single result to open directly on Salesforce, and a multiple result to

open on a result page where one of the options can be selected. Click Save again to apply the

change.

● For singular results, a Salesforce page will open. (Web Browsers might be slow to respond, refresh

the TMS page if need be.)

● If multiple contact profiles are available, a result page will open, where the Id field is clickable.

Clicking this will open the contact in Salesforce.

How to Create the Add Activity to Contact Webhook

The Add Activity Webhook will be used to add the call activity to a contact's history in Salesforce. The

webhook will be linked to the View Contact By Number and Add Activity webhook and will not be seen in

the Agent Workspace.

In order to create and test this webhook, the user will need the Contact Account ID (not to be confused

with the Owner Account ID), which is a contact’s ID in Salesforce. This ID will be used during the Test and

Configure stage of the webhook creation(This is the WhoID parameter) but will not be needed during the

normal use of the webhooks in the Agent Workspace. To locate the Owner ID, follow the below steps:

● In Salesforce select Switch to Lightning Experience if not already in this space.

● Select the Contacts tab, and select any contact in the list to open it.

● The Contact ID will be in the URL. Copy and save it for when it’s needed in the test values.

Now that the Contact Account ID is copied and saved, the webhook can be created.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX PostWebhook Type. Select the JSONWebhook Data Type. Select the

Show Request Result Response Type, which indicates how the result should be handled.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL, the second part is the page that needs to be accessed.

Add parameters

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_activityhistory.htm

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_activityhistory.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_activityhistory.htm

● Select the + Add Request Parameter button. Then drag and drop a Dynamic Parameter

into a value box. You will need to do this three separate times to have all the required Dynamic

Parameters for the webhook. Two of the webhooks are static and do not need Dynamic

Parameters.

● Add the parameter name as explained in the Salesforce API document as seen below.

● Name: Subject*(Static Value)

● Parameter Value: Call

*Contains the subject of the task or event.

● Name: Status (Static Value)

● Parameter Value: Completed

● Name: WhoId (Read as “Who ID”)

● Parameter Value: {DYNAMIC_PARAMETER}}

*The WhoId represents a human, such as a

lead or a contact. WhoIds are polymorphic.

Polymorphic means a WhoId is equivalent to a contact’s ID or a lead’s ID

● Name: CallDurationinSeconds*

● Parameter Value: {CALL_DURATION}

*Call duration measured in seconds and

will never contain a decimal example: 12 and not 0:12

● Name: CallDisposition*

● Parameter Value: {CALL_DISPOSITION} - {CALL_OUTCOME}

*Call Disposition can be a combination of the Disposition and the Outcome or just the

disposition. This depends on the client's preference.

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button.

● A pop-up window opens requesting test values, Add the Account Owner ID as saved in the

beginning of this webhook creation, add the call duration in Seconds and a Disposition. Press

Apply. This test value is only requested in this step to ensure that a result is given. The Agent will

not need to add test values during regular webhook usage.

● A Result page will open with the information requested by the webhook. (The Disposition and Call

Duration might not Automatically display; thus, follow the additional information steps below)

The results of adding a phone call can be viewed on the Salesforce Tasks page.

Additional Information

The Disposition and Call Duration might not Automatically display; thus, these two options need to be

enabled in Salesforce.

● On the Task page, select the settings icon and then Edit Object. This will open a new

page.

● Select the Fields & Relationships option on the left menu bar. Click on the Call Duration

Field Label to enable the Call Duration to be seen. The next few steps will follow the Call

Duration, but are exactly the same for Call Result.

● On the Call duration page, select the View Field Accessibility button.

● The field accessibility page will open, Select Call duration in the drop down menu. This page

allows the user to view Task field accessibility for a particular field and change it.

● Select the Read Only cell in the text table next to the Standard User. This will open the

Access Settings for the Task Field Call Duration page.

● Check the Visible Check box and click Save.

How to Create the Webhook (Linked to Add Activity)

The Get Contact Webhook will allow agents to add the call activity to a client in Salesforce with a full or

partial phone Number. If a singular client profile is located the activity will automatically add to their

profile when the call is dispositioned. If multiple contacts are found, the results page will open and a client

profile can be selected. The call activity will then be added to that client's profile and the results page will

close. The Add activity Webhook will be linked to ensure that the call activity is added to the correct

contact profile.

To create the webhook, follow steps 1 - 5 as per the How to Create the Add This Contact Webhook.

● Give the webhook a name: Used to identify the webhook, it is helpful to make this descriptive.

Select the AJAX Get Webhook Type. Select the JSONWebhook Data Type. Select the

*Show Multiple Result Response Type, which indicates how the result should be handled.

*Note: When testing the webhook, select Show

Request Result. This will open a result page,

even when there is only one result, allowing the

selection of viewable fields which will be covered

in later steps.

● Add the Salesforce Classic Customer Domain URL that the webhook needs to access. The first part

of the URL is the company URL, the second part is the page that needs to be accessed.

Add parameters:

Dynamic Parameters are added when the request parameter button is selected. These variables

are found in the target system’s API documentation, and the capitalisation as per the document is

important.

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api

_objects_contact.htm

● Select the + Add Request Parameter button. Drag and drop the correct parameter into the

parameter value box.

● Add the parameter Name as explained in the Salesforce API document as seen below.

● Name: Phone

● Parameter Value: {CALL_NUMBER_NOPREFIX}

https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm
https://developer.salesforce.com/docs/atlas.en-us.object_reference.meta/object_reference/sforce_api_objects_contact.htm

● Click Save to create the webhook. The webhook will close. Open the webhook again and

select the Test and Configure button,

● A pop-up window opens requesting a test value, Add a Phone number of a contact in

Salesforce and press Apply. This test value is only requested in this step to ensure that a

result is given. The Agent will not need to add test values in the normal usage of the webhook.

● A Result page will open with the information requested by the webhook. For some

webhooks, the result page will have many columns of information, but not all of the information

will be needed by an agent. Therefore it is important to limit what the agent sees. To do this select

the tick box next to the column of information the agent should see. Click on Agent View

and press Apply to see the results the same way the agent would.

Unfiltered

● Select the Id link chain icon to link another webhook to the Get Contact with Activity. Select the

Add ActivityWebhook. Press Apply. This will allow the Get Contact with Activity

webhook to add a call task to a contact when the caller is a Salesforce client.

● Once the result shows correctly, change the response type in the webhook to Show Multiple

Results Only. This will allow a single result to send a task directly to the correct contact in

Salesforce, and a multiple result to open on a result page where one of the contacts can be

selected. Click Save again to apply the change.

● For singular results, the activity will add to the contact’s task list. If multiple contact profiles are

available, a result page will open, where the Id field is clickable. Select the Contact Id to add

the disposition to their task list.

● A second result page will open, showing that the activity has been added successfully.

Configuration of Webhooks in Queues
Once a webhook has been created, it can be added to a queue or campaign.

● Click on the PBX Manager menu item. Click on the Queues sub-menu item.

● Choose the desired queue . When testing an outbound queue, add the webhook to THAT

queue. Select the Webhooks tab. Ensure the Agent is part of the selected queue.

● Click the AddWebhook button.

● Choose the desired Webhook and its behaviour.

● A form will show requesting three values from the dropdown lists provided

○ Webhook: the webhook name

○ When To Fire: what event should trigger the webhook to fire

○ Webhook Behaviour: Under what condition/behaviour the webhook should fire

Note: There is no need to configure the Add Activity, Account Lookup or Open Salesforce webhooks as

they are linked in the integration centre.

Contact Lookup By Phone Number

● Select Contact Lookup By Phone Number

● Select On Answer Button

● Select Always fire

Alt Contact Lookup By Phone Number

● Select Alt Contact View Contact

● Select In Call Button

● Select Always fire

*It allows the agent to search for a different contact

by number whilst on a call if needed, for example, if

the caller asks the agent to see if their spouse has a profile.

Alt Contact Lookup By Name

● Select Get Contact By Name

● Select In Call/button

● Select Always fire

*It allows the agent to search for a different contact

by name whilst on a call if needed.

Add This Contact with Account to Salesforce

● Select Add This Contact with Account

● Select In Call Button

● Select Always fire

Get Contact with Activity

● Select Get Contact with Activity

● Select On Disposition

● Select Always fire

● Click Apply to save the changes.

These same steps will be applied when adding webhooks to a campaign.

Webhooks In Use in Agent Workspace

From an agent's point of view, to use webhooks, the user must be logged into the TMS system as an

agent, and be logged into their Salesforce account.

● Log into the TMS system as an Agent. This can be done either at the login screen or by changing

the Account type.

● Select the Agent Menu Item, and then the Agent Workspace Sub-menu item.

● Once logged into the workspace, with the phone idle, select the dial icon to make a call.

During a call, the Webhooks will show as buttons as set up. If all 3 Webhooks have been added to

the queue, three buttons should appear on the page.

Contact Lookup by Phone NumberWebhook (On Answer)

The purpose of this webhook is to know if the caller is a Salesforce client and has a profile.

● The webhook will fire and automatically use the dialled number as a parameter in calling the

webhook.. This is not a button that can be seen in the Agent Workspace. If a caller does not have a

Salesforce account, a No Records message will show on a results page.

● If one contact is linked to the number the Salesforce Contact Page will open on a separate

browser tab.

● If multiple contacts are linked to the number, the results page will open. Select a contact Id to

open the contact in Salesforce.

Alternative Contact Lookup by Phone NumberWebhook

The purpose of this webhook is to view a contact’s information who is not the caller, and see if they have a

profile in Salesforce. An example of this would be when the caller asks the agent to check if their spouse if

a client and if they have a Salesforce account.

● Select the Alt Contact Lookup by Phone Number button.

● A pop-up will request a number. Enter a number and press Apply.

● If a caller does not have a Salesforce account, a No Records message will show on a results page.

● If one contact is linked to the number the Salesforce Contact Page will open on a separate

browser tab.

● If multiple contacts are linked to the number, the results page will open. Select a contact Id to

open the contact in Salesforce

Alternative Contact Lookup by NameWebhook

The purpose of this webhook is to search for a Contact in Salesforce by their name and show them in a

pop-up Salesforce page.

● Select the Alt Contact By Name button.

● A pop-up will request a name. Enter a name and press Apply.

● If a caller does not have a Salesforce account, a No Records message will show on a results page.

● If one contact is linked to the number the Salesforce Contact Page will open on a separate

browser tab.

● If multiple contacts are linked to the number, the results page will open. Select a contact Id to

open the contact in Salesforce

Add This Contact Webhook

These webhooks aim to add a new contact from the Agent Workspace to Salesforce.

● Select the Add This Contact with Account button.

● A pop-up will request an Account Name. Enter the Company name that the contact should be

associated with and press Apply.

● The webhook will fire and return account information for the name entered from Salesforce. The

value returned pre-populates the Account Id field in the Add Contact webhook. The linked

webhook will fire automatically and open a form for the agent to complete the required fields,

which are Name, Last Name and Email address. Select Apply to save the information.

Note: The phone number and account values are pre-populated from the dialled number and account

information already retrieved.

● A results tab will open And show the new Contact Id.

Get ContactWebhook with Activity) (On Disposition)

The purpose of this webhook is to add a call activity to the caller account if they have one in Salesforce at

the end of the call when it is dispositioned. As this webhook is activated on disposition, it will not open if

the Disposition section is not enabled on a queue. See Feature Article on Queues for more information.

● When the call ends, select the disposition and its outcome. If one contact is linked to the

number, the disposition will trigger the webhook to add the outcome as a task to the caller's

contact account. If a disposition is not added, or timed out, the webhook will not trigger,

https://support.euphoria.co.za/support/solutions/articles/3000115781-tms-feature-pbx-manager-queues

● If the caller was not a client in Salesforce, or added as a client to Salesforce, a results page will
open with a No Records message

● If multiple contacts are linked to the number, the results page will open. Select the Contact Id

to add the disposition to their task list.

● A second result page will open, showing that the activity has been added successfully.

